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What is Statistics?

Relatively new discipline
Scientific revolution in the 20th century
Data and computing revolutions in the 21st century
The world is stochastic rather than deterministic
Probability theory used to model stochastic events

Statistical inference: Learning about what we do not observe
(parameters) using what we observe (data)
Without statistics: wild guess
With statistics: principled guess

1 assumptions
2 formal properties
3 measure of uncertainty
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Three Modes of Statistical Inference

1 Descriptive Inference: summarizing and exploring data
Inferring “ideal points” from rollcall votes
Inferring “topics” from texts and speeches
Inferring “social networks” from surveys

2 Predictive Inference: forecasting out-of-sample data points
Inferring future state failures from past failures
Inferring population average turnout from a sample of voters
Inferring individual level behavior from aggregate data

3 Causal Inference: predicting counterfactuals
Inferring the effects of ethnic minority rule on civil war onset
Inferring why incumbency status affects election outcomes
Inferring whether the lack of war among democracies can be
attributed to regime types
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Statistics for Social Scientists

Quantitative social science research:
1 Find a substantive question
2 Construct theory and hypothesis
3 Design an empirical study and collect data
4 Use statistics to analyze data and test hypothesis
5 Report the results

No study in the social sciences is perfect
Use best available methods and data, but be aware of limitations

Many wrong answers but no single right answer
Credibility of data analysis:

Data analysis = assumption︸ ︷︷ ︸
subjective

+ statistical theory︸ ︷︷ ︸
objective

+ interpretation︸ ︷︷ ︸
subjective

Statistical methods are no substitute for good research design
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Sample Surveys
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Sample Surveys

A large population of size N
Finite population: N <∞
Super population: N =∞

A simple random sample of size n
Probability sampling: e.g., stratified, cluster, systematic sampling
Non-probability sampling: e.g., quota, volunteer, snowball sampling

The population: Xi for i = 1, . . . ,N
Sampling (binary) indicator: Z1, . . . ,ZN

Assumption:
∑N

i=1 Zi = n and Pr(Zi = 1) = n/N for all i
# of combinations:

(N
n

)
= N!

n!(N−n)!

Estimand = population mean vs. Estimator = sample mean:

X =
1
N

N∑
i=1

Xi and x̄ =
1
n

N∑
i=1

ZiXi
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Estimation of Population Mean

Design-based inference
Key idea: Randomness comes from sampling alone
Unbiasedness (over repeated sampling): E(x̄) = X
Variance of sampling distribution:

V(x̄) =
(

1− n
N

)
︸ ︷︷ ︸

finite population correction

S2

n

where S2 =
∑N

i=1(Xi − X )2/(N − 1) is the population variance

Unbiased estimator of the variance:

σ̂2 ≡
(

1− n
N

) s2

n
and E(σ̂2) = V(x̄)

where s2 =
∑N

i=1 Zi(Xi − x̄)2/(n − 1) is the sample variance

Plug-in (sample analogue) principle
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Some VERY Important Identities in Statistics

1 V(X ) = E(X 2)− {E(X )}2
2 Cov(X ,Y ) = E(XY )− E(X )E(Y )

3 Law of Iterated Expectation:

E(X ) = E{E(X | Y )}

4 Law of Total Variance:

V(X ) = E{V(X | Y )}︸ ︷︷ ︸
within−group variance

+ V{E(X | Y )}︸ ︷︷ ︸
between−group variance

5 Mean Squared Error Decomposition:

E{(θ̂ − θ)2} = {E(θ̂ − θ)}2︸ ︷︷ ︸
bias2

+ V(θ̂)︸︷︷︸
variance
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Analytical Details of Randomization Inference

1 E(Zi) = E(Z 2
i ) = n/N and V(Zi) = E(Z 2

i )− E(Zi)
2 = n

N

(
1− n

N

)
2 E(ZiZj) = E(Zi | Zj = 1) Pr(Zj = 1) = n(n−1)

N(N−1) for i 6= j and thus
Cov(Zi ,Zj) = E(ZiZj)− E(Zi)E(Zj) = − n

N(N−1)

(
1− n

N

)
3 Use these results to derive the expression:

V(x̄) =
1
n2V

(
N∑

i=1

ZiXi

)

=
1
n2


N∑

i=1

X 2
i V(Zi ) +

N∑
i=1

N∑
j 6=i

XiXj Cov(Zi ,Zj )


=

1
n

(
1− n

N

) 1
N(N − 1)

N
N∑

i=1

X 2
i −

(
N∑

i=1

Xi

)2
︸ ︷︷ ︸

=S2

where we used the equality
∑N

i=1(Xi − X )2 =
∑N

i=1 X 2
i − NX

2
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4 Finally, we proceed as follows:

E

{
N∑

i=1

Zi(Xi − x̄)2

}
= E

 N∑
i=1

Zi

(Xi − X ) + (X − x̄)︸ ︷︷ ︸
add & subtract


2


= E

{
N∑

i=1

Zi(Xi − X )2 − n(X − x̄)2

}

= E

{
N∑

i=1

Zi(Xi − X )2

}
− nV(x̄)

=
n(N − 1)

N
S2 −

(
1− n

N

)
S2

= (n − 1)S2

Thus, E(s2) = S2, implying that the sample variance is unbiased
for the population variance
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Inverse Probability Weighting

Unequal sampling probability: Pr(Zi = 1) = πi for each i
We still randomly sample n units from the population of size N
where

∑N
i=1 Zi = n implying

∑N
i=1 πi = n

Oversampling of minorities, difficult-to-reach individuals, etc.
Sampling weights = inverse of sampling probability
Horvitz-Thompson estimator:

x̃ =
1
N

N∑
i=1

ZiXi

πi

Unbiasedness: E(x̃) = X
Design-based variance is complicated but available
Háyek estimator (biased but possibly more efficient):

x̃∗ =

∑N
i=1 ZiXi/πi∑N

i=1 Zi/πi

Unknow sampling probability post-stratification
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Model-Based Inference

An infinite population characterized by a probability model
Nonparametric F
Parametric Fθ (e.g., N (µ, σ2))

A simple random sample of size n: X1, . . . ,Xn

Assumption: Xi is independently and identically distributed (i.i.d.)
according to F
Estimator = sample mean vs. Estimand = population mean:

µ̂ ≡ 1
n

n∑
i=1

Xi and µ ≡ E(Xi)

Unbiasedness: E(µ̂) = µ

Variance and its unbiased estimator:

V(µ̂) =
σ2

n
and σ̂2 ≡ 1

n − 1

n∑
i=1

(Xi − µ̂)2

where σ2 = V(Xi)
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(Weak) Law of Large Numbers (LLN)

If {Xi}ni=1 is a sequence of i.i.d. random variables with mean µ and
finite variance σ2, then

X n
p−→ µ

where “
p−→” denotes the convergence in probability, i.e., if

Xn
p−→ x , then

lim
n→∞

Pr(|Xn − x | > ε) = 0 for any ε > 0

If Xn
p−→ x , then for any continuous function f (·), we have

f (Xn)
p−→ f (x)

Implication: Justifies the plug-in (sample analogue) principle

Kosuke Imai (Princeton) Basic Principles POL572 Spring 2016 13 / 66



LLN in Action

In Journal of Theoretical Biology,
1 “Big and Tall Parents have More Sons” (2005)
2 “Engineers Have More Sons, Nurses Have More Daughters” (2005)
3 “Violent Men Have More Sons” (2006)
4 “Beautiful Parents Have More Daughters” (2007)

314     American Scientist, Volume 97 © 2009 Sigma Xi, The Scientific Research Society. Reproduction 
with permission only. Contact perms@amsci.org.

The data are available for download 
at http://www.stat.columbia.edu/
~gelman/research/beautiful/

As of 2007, the 50 most beautiful 
people of 1995 had 32 girls and 24 
boys, or 57.1 percent girls, which is 
8.6 percentage points higher than 
the population frequency of 48.5 
percent. This sounds like good news 
for the hypothesis. But the standard 
error is 0.5/√(32 + 24) = 6.7 percent, 
so the discrepancy is not statistically 
significant. Let’s get more data. 

The 50 most beautiful people of 
1996 had 45 girls and 35 boys: 56.2 
percent girls, or 7.8 percent more 
than in the general population. 
Good news! Combining with 1995 
yields 56.6 percent girls—8.1 percent 
more than expected—with a stan-
dard error of 4.3 percent, tantaliz-
ingly close to statistical significance. 
Let’s continue to get some confirm-
ing evidence. 

The 50 most beautiful people of 
1997 had 24 girls and 35 boys—no, 
this goes in the wrong direction, let’s 
keep going…For 1998, we have 21 
girls and 25 boys, for 1999 we have 
23 girls and 30 boys, and the class 
of 2000 has had 29 girls and 25 boys. 
Putting all the years together and 

removing the duplicates, such as 
Brad Pitt, People’s most beautiful 
people from 1995 to 2000 have had 
157 girls out of 329 children, or 47.7 
percent girls (with a standard error 
of 2.8 percent), a statistically insig-
nificant 0.8 percentage points lower 
than the population frequency. So 
nothing much seems to be going on 
here. But if statistically insignificant 
effects were considered acceptable, 
we could publish a paper every two 
years with the data from the latest 
“most beautiful people.” 

Why Is This Important?
Why does this matter? Why are we 
wasting our time on a series of pa-
pers with statistical errors that hap-
pen not to have been noticed by a 
journal’s reviewers? We have two 
reasons: First, as discussed in the 
next section, the statistical difficul-
ties arise more generally with find-
ings that are suggestive but not sta-
tistically significant. Second, as we 
discuss presently, the structure of 
scientific publication and media at-
tention seem to have a biasing effect 
on social science research. 

Before reaching Psychology Today 
and book publication, Kanazawa’s 

findings received broad attention in 
the news media. For example, the 
popular Freakonomics blog reported,

A new study by Satoshi Kanaza-
wa, an evolutionary psychologist 
at the London School of Econom-
ics, suggests . . . there are more 
beautiful women in the world 
than there are handsome men. 
Why? Kanazawa argues it’s be-
cause good-looking parents are 
36 percent more likely to have a 
baby daughter as their first child 
than a baby son—which suggests, 
evolutionarily speaking, that 
beauty is a trait more valuable for 
women than for men. The study 
was conducted with data from 
3,000 Americans, derived from 
the National Longitudinal Study 
of Adolescent Health, and was 
published in the Journal of Theo-
retical Biology.

Publication in a peer-reviewed jour-
nal seemed to have removed all skepti-
cism, which is noteworthy given that 
the authors of Freakonomics are them-
selves well qualified to judge social 
science research. 

In addition, the estimated effect 
grew during the reporting. As noted 
above, the 4.7 percent (and not sta-
tistically significant) difference in the 
data became 8 percent in Kanazawa’s 
choice of the largest comparison (most 
attractive group versus the average of 
the four least attractive groups), which 
then became 26 percent when reported 
as a logistic regression coefficient, and 
then jumped to 36 percent for reasons 
unknown (possibly a typo in a news-
paper report). The funny thing is that 
the reported 36 percent signaled to us 
right away that something was wrong, 
since it was 10 to 100 times larger than 
reported sex-ratio effects in the bio-
logical literature. Our reaction when 
seeing such large estimates was not 
“Wow, they’ve found something big!” 
but, rather, “Wow, this study is under-
powered!” Statistical power refers to 
the probability that a study will find 
a statistically significant effect if one 
is actually present. For a given true ef-
fect size, studies with larger samples 
have more power. As we have dis-
cussed here, “underpowered” studies 
are unlikely to reach statistical signifi-
cance and, perhaps more importantly, 
they drastically overestimate effect 
size estimates. Simply put, the noise is 
stronger than the signal.

1995 1996 1997

1998 1999 2000

32 girls 24 boys

29 girls 25 boys

45 girls 35 boys

21 girls 25 boys

24 girls 35 boys

23 girls 30 boys

Figure 4. The authors performed a sex-ratio study of the offspring of the most beautiful people 
in the world as selected by People magazine between 1995 and 2000. The girls started strong in 
1995 with 32 girls to 24 boys. Girls continued strong in 1996. However, as the sample size grew, 
the ratio converged on the population frequency, concluding with 157 girls and 172 boys, or 
47.7 percent girls, approximately the same as the population frequency of 48.5 percent.

Gelman & Weakliem, American Scientist

Law of Averages in action
1 1995: 57.1%
2 1996: 56.6
3 1997: 51.8
4 1998: 50.6
5 1999: 49.3
6 2000: 50.0

No dupilicates: 47.7%

Population frequency: 48.5%
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Central Limit Theorem (CLT)

If {Xi}ni=1 is a sequence of i.i.d. random variables with mean µ and
finite variance σ2, then

X n − µ
σ/
√

n︸ ︷︷ ︸
z-score of sample mean

d−→ N (0,1)

where “ d−→” represents the convergence in distribution, i.e., if
Xn

d−→ X , then

lim
n→∞

P(Xn ≤ x) = P(X ≤ x) for all x

with P(X ≤ x) being continuous at every x

If Xn
d−→ X , then for any continuous function f (·),

f (Xn)
d−→ f (X )

Implication: Justifies asymptotic (normal) approximation
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CLT in Action

nth row and k th column =
(n−1

k−1

)
= # of ways to get there

Binomial distribution: Pr(X = k) =
(n

k

)
pk (1− p)n−k

Sir Francis Galton’s Quincunx, Boston Museum of Science, or just
check out YouTube
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Asymptotic Properties of the Sample Mean

The Model: Xi
i.i.d.∼ Fµ,σ2

LLN implies consistency:

µ̂ = X n
p−→ µ

CLT implies asymptotic normality:
√

n(µ̂− µ)
d−→ N (0, σ2)

=⇒ µ̂
approx.∼ N

(
µ,
σ2

n

)
in a large sample

But, σ is unknown
Standard error: estimated standard deviation of sampling
distribution

s.e. =
σ̂√
n

where σ̂2 is unbiased (shown before) and consistent for σ2 (LLN)
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Asymptotic Confidence Intervals

Putting together, we have:

µ̂− µ
σ̂/
√

n︸ ︷︷ ︸
z−score

d−→ N (0,1)

We used the Slutzky Theorem: If Xn
p−→ x and Yn

d−→ Y , then
Xn + Yn

d−→ x + Y and XnYn
d−→ xY

This gives 95% asymptotic confidence interval:

Pr
(
−1.96 ≤ µ̂− µ

σ̂/
√

n
≤ 1.96

)
p−→ 0.95

=⇒ Pr
(
µ̂− 1.96× σ̂/

√
n ≤ µ ≤ µ̂+ 1.96× σ̂/

√
n
) p−→ 0.95
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(1− α)× 100% asymptotic confidence interval (symmetric and
balanced):

CI1−α = [µ̂− zα/2 × s.e., µ̂+ zα/2 × s.e.]

where s.e. represents the standard error
Critical value: Pr(Z > zα/2) = Φ(−zα/2) = α/2 where Z ∼ N (0,1)

1 α = 0.01 gives zα/2 = 2.58
2 α = 0.05 gives zα/2 = 1.96
3 α = 0.10 gives zα/2 = 1.64

Be careful about the interpretation!
Confidence intervals are random, while the truth is fixed
Probability that the true value is in a particular confidence interval is
either 0 or 1 and not 1− α

Nominal vs. actual coverage probability: Pr(µ ∈ CI1−α)
p−→ 1− α

Asymptotic inference = approximate inference
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Exact Inference with Normally Distributed Data

Sometimes, exact model-based inference is possible

If Xi
i.i.d.∼ N (µ, σ2), then µ̂ ∼ N (µ, σ2/n) in a finite sample

Moreover, in a finite sample,

t−statistic =
µ̂− µ
σ̂/
√

n
exactly∼ tn−1

where tn−1 is the t distribution with n − 1 degrees of freedom
Use tn−1 (rather than N (0,1)) to obtain the critical value for exact
confidence intervals
As n increases, tn−1 approaches to N (0,1)

Fat tail: more conservative inference with wider CI

Sum of independent random variables: Bernoulli (Binomial),
Exponential (Gamma), Poisson (Poisson), χ2 (χ2), etc.
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Student’s t Distribution
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Application: Presidential Election Polling

2000 Butterfly ballot debacle: Oops, we have this system called
electoral college!

National polls =⇒ state polls
Forecasting fun: political methodologists, other “statisticians”
Idea: estimate probability that each state is won by a candidate
and then aggregate electoral votes
Quantity of interest: Probability of a candidate winning the election
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Simple Model-Based Inference

Setup: njk respondents of poll j from state k
Model for # of Obama supporters in poll j and state k :

Xjk
indep.∼ Binom(njk ,pk )

Parameters of interest: θ = {p1,p2, . . . ,p51}
Popular methods of inference:

1 Method of moments (MM)→ solve the moment equation
sample moments(X ) = population moments(θ)

2 Maximum likelihood (ML)→ maximize the likelihood f (X | θ)
3 Bayesian inference→ derive the posterior of parameters

f (θ | X ) =

likelihood︷ ︸︸ ︷
f (X | θ) ×

prior︷︸︸︷
f (θ)

f (X )︸︷︷︸
marginal likelihood =

∫
f (X |θ)f (θ)dθ

∝ f (X | θ) f (θ)

In this case, MM and ML give p̂k =
∑Jk

j=1 Xjk/
∑Jk

j=1 njk
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Estimated Probability of Obama Victory in 2008

Estimate pk for each state
Simulate M elections using p̂k and its standard error:

1 for state k , sample Obama’s voteshare from N (p̂k , V̂(p̂k ))
2 collect all electoral votes from winning states

Plot M draws of total electoral votes
Distribution of Obama's Predicted Electoral Votes

Electoral Votes

D
en

si
ty

320 340 360 380

0.
00

0.
02

0.
04

0.
06

0.
08

Actual # of 
 EVs won

mean = 353.28

sd = 11.72
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Nominal vs. Actual Coverage
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Key Points

Random sampling enables statistical inference

Design-based vs. Model-based inference
1 Design-based: random sampling as basis for inference
2 Model-based: probability model as basis for inference

Sampling weights: inverse probability weighting

Challenges of survey research:
cluster sampling, multi-stage sampling =⇒ loss of efficiency
stratified sampling
unit non-response
non-probability sampling =⇒ model-based inference
item non-response, social desirability bias, etc.
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Causal Inference
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What is Causal Inference?

Comparison between factual and counterfactual for each unit

Incumbency effect:
What would have been the election outcome if a candidate were
not an incumbent?

Resource curse thesis:
What would have been the GDP growth rate without oil?

Democratic peace theory:
Would the two countries have escalated crisis in the same
situation if they were both autocratic?

SUPPLEMENTARY READING: Holland, P. (1986). Statistics and
causal inference. (with discussions) Journal of the American
Statistical Association, Vol. 81: 945–960.
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Defining Causal Effects

Units: i = 1, . . . ,n
“Treatment”: Ti = 1 if treated, Ti = 0 otherwise
Observed outcome: Yi

Pre-treatment covariates: Xi

Potential outcomes: Yi(1) and Yi(0) where Yi = Yi(Ti)

Voters Contact Turnout Age Party ID
i Ti Yi(1) Yi(0) Xi Xi
1 1 1 ? 20 D
2 0 ? 0 55 R
3 0 ? 1 40 R
...

...
...

...
...

...
n 1 0 ? 62 D

Causal effect: Yi(1)− Yi(0)
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The Key Assumptions

The notation implies three assumptions:
1 No simultaneity (different from endogeneity)
2 No interference between units: Yi (T1,T2, . . . ,Tn) = Yi (Ti )
3 Same version of the treatment

Stable Unit Treatment Value Assumption (SUTVA)
Potential violations:

1 feedback effects
2 spill-over effects, carry-over effects
3 different treatment administration

Potential outcome is thought to be “fixed”: data cannot distinguish
fixed and random potential outcomes
Potential outcomes across units have a distribution
Observed outcome is random because the treatment is random

Multi-valued treatment: more potential outcomes for each unit
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Causal Effects of Immutable Characteristics

“No causation without manipulation” (Holland, 1986)
Immutable characteristics; gender, race, age, etc.
What does the causal effect of gender mean?

Causal effect of having a female politician on policy outcomes
(Chattopadhyay and Duflo, 2004 QJE)
Causal effect of having a discussion leader with certain
preferences on deliberation outcomes (Humphreys et al. 2006
WP)
Causal effect of a job applicant’s gender/race on call-back rates
(Bertrand and Mullainathan, 2004 AER)

Problem: confounding
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Average Treatment Effects

Sample Average Treatment Effect (SATE):

1
n

n∑
i=1

(Yi(1)− Yi(0))

Population Average Treatment Effect (PATE):

E(Yi(1)− Yi(0))

Population Average Treatment Effect for the Treated (PATT):

E(Yi(1)− Yi(0) | Ti = 1)

Treatment effect heterogeneity: Zero ATE doesn’t mean zero
effect for everyone! =⇒ Conditional ATE
Other quantities: Quantile treatment effects etc.
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Design Considerations

Randomized experiments
Laboratory experiments
Survey experiments
Field experiments

Observational studies

Tradeoff between internal and external validity
Endogeneity: selection bias
Generalizability: sample selection, Hawthorne effects, realism

“Designing” observational studies
Natural experiments (haphazard treatment assignment)
Examples: birthdays, weather, close elections, arbitrary
administrative rules

Generalizing experimental results: possible extrapolation

Bottom line: No study is perfect, statistics is always needed
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(Classical) Randomized Experiments

Units: i = 1, . . . ,n
May constitute a simple random sample from a population
Treatment: Ti ∈ {0,1}
Outcome: Yi = Yi(Ti)

Complete randomization of the treatment assignment
Exactly n1 units receive the treatment
n0 = n − n1 units are assigned to the control group
Assumption: for all i = 1, . . . ,n,

∑n
i=1 Ti = n1 and

(Yi(1),Yi(0)) ⊥⊥ Ti , Pr(Ti = 1) =
n1

n
Estimand = SATE or PATE
Estimator = Difference-in-means:

τ̂ ≡ 1
n1

n∑
i=1

TiYi −
1
n0

n∑
i=1

(1− Ti)Yi
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Unbiased Estimation of Average Treatment Effects

Key idea (Neyman 1923): Randomness comes from treatment
assignment (plus sampling for PATE) alone
Design-based (randomization-based) rather than model-based
Statistical properties of τ̂ based on design features

Define O ≡ {Yi(0),Yi(1)}ni=1

Unbiasedness (over repeated treatment assignments):

E(τ̂ | O) =
1
n1

n∑
i=1

E(Ti | O)Yi(1)− 1
n0

n∑
i=1

{1− E(Ti | O)}Yi(0)

=
1
n

n∑
i=1

(Yi(1)− Yi(0))

= SATE

Kosuke Imai (Princeton) Basic Principles POL572 Spring 2016 35 / 66



Randomization Inference for SATE

Variance of τ̂ :

V(τ̂ | O) =
1
n

(
n0

n1
S2

1 +
n1

n0
S2

0 + 2S01

)
,

where for t = 0,1,

S2
t =

1
n − 1

n∑
i=1

(Yi (t)− Y (t))2 sample variance of Yi (t)

S01 =
1

n − 1

n∑
i=1

(Yi (0)− Y (0))(Yi (1)− Y (1)) sample covariance

The variance is NOT identifiable
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The usual variance estimator is conservative on average:

V(τ̂ | O) ≤
S2

1
n1

+
S2

0
n0

Under the constant additive unit causal effect assumption, i.e.,
Yi(1)− Yi(0) = c for all i ,

S01 =
1
2

(S2
1 + S2

0) and V(τ̂ | O) =
S2

1
n1

+
S2

0
n0

The optimal treatment assignment rule:

nopt
1 =

n
1 + S0/S1

, nopt
0 =

n
1 + S1/S0
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Details of Variance Derivation

1 Let Xi = Yi(1) + n1Yi(0)/n0 and Di = nTi/n1 − 1, and write

V(τ̂ | O) =
1
n2 E


(

n∑
i=1

DiXi

)2 ∣∣∣∣ O


2 Show

E(Di | O) = 0, E(D2
i | O) =

n0

n1
,

E(DiDj | O) = − n0

n1(n − 1)

3 Use Ê and Ë to show,

V(τ̂ | O) =
n0

n(n − 1)n1

n∑
i=1

(Xi − X )2

4 Substitute the potential outcome expressions for Xi
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Randomization Inference for PATE

Now assume that units are randomly sampled from a population
Unbiasedness (over repeated sampling):

E{E(τ̂ | O)} = E(SATE)

= E(Yi(1)− Yi(0))

= PATE

Variance:

V(τ̂) = V(E(τ̂ | O)) + E(V(τ̂ | O))

=
σ2

1
n1

+
σ2

0
n0

where σ2
t is the population variance of Yi(t) for t = 0,1
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Asymptotic Inference for PATE

Hold k = n1/n constant
Rewrite the difference-in-means estimator as

τ̂ =
1
n

n∑
i=1

(
TiYi(1)

k
− (1− Ti)Yi(0)

1− k

)
︸ ︷︷ ︸

i.i.d. with mean PATE & variance nV(τ̂)

Consistency:
τ̂

p−→ PATE

Asymptotic normality:

√
n(τ̂ − PATE)

d−→ N

(
0,
σ2

1
k

+
σ2

0
1− k

)
(1− α)× 100% Confidence intervals:

[τ̂ − s.e.× zα/2, τ̂ + s.e.× zα/2]
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Model-based Inference about PATE

A random sample of n1 units from the “treatment” population of
infinite size
A random sample of n0 units from the “control” population of
infinite size
The randomization of the treatment implies that two populations
are identical except the receipt of the treatment
The difference in the population means = PATE

Unbiased estimator from the model-based sample surveys:

τ̂ =
1
n1

n1∑
i=1

Y1i −
1
n0

n0∑
i=1

Y0i

Variance is identical: V(τ̂) =
σ2

1
n1

+
σ2

0
n0
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Identification vs. Estimation

Observational studies =⇒ No randomization of treatment
Difference in means between two populations can still be
estimated without bias
Valid inference for ATE requires additional assumptions
Law of Decreasing Credibility (Manski): The credibility of inference
decreases with the strength of the assumptions maintained

Identification: How much can you learn about the estimand if you
had an infinite amount of data?
Estimation: How much can you learn about the estimand from a
finite sample?
Identification precedes estimation
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Identification of the Average Treatment Effect

Assumption 1: Overlap (i.e., no extrapolation)

0 < Pr(Ti = 1 | Xi = x) < 1 for any x ∈ X

Assumption 2: Ignorability (exogeneity, unconfoundedness, no
omitted variable, selection on observables, etc.)

{Yi(1),Yi(0)} ⊥⊥ Ti | Xi = x for any x ∈ X

Under these assumptions, we have nonparametric identification:

τ = E{µ(1,Xi)− µ(0,Xi)}

where µ(t , x) = E(Yi | Ti = t ,Xi = x)
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Partial Identification

Partial (sharp bounds) vs. Point identification (point estimates):
1 What can be learned without any assumption other than the ones

which we know are satisfied by the research design?
2 What is a minimum set of assumptions required for point

identification?
3 Can we characterize identification region if we relax some or all of

these assumptions?

ATE with binary outcome:

[−Pr(Yi = 0 | Ti = 1,Xi = x)π(x)− Pr(Yi = 1 | Ti = 0,Xi = x){1− π(x)},
Pr(Yi = 1 | Ti = 1,Xi = x)π(x) + Pr(Yi = 0 | Ti = 0,Xi = x){1− π(x)}]

where π(x) = Pr(Ti = 1 | Xi = x) is called propensity score

The width of the bounds is 1: “A glass is half empty/full”
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Application: List Experiment

The 1991 National Race and Politics Survey (Sniderman et al.)
Randomize the sample into the treatment and control groups
The script for the control group

Now I’m going to read you three things that sometimes
make people angry or upset. After I read all three,
just tell me HOW MANY of them upset you. (I don’t
want to know which ones, just how many.)

(1) the federal government increasing the tax on
gasoline;

(2) professional athletes getting million-dollar-plus
salaries;

(3) large corporations polluting the environment.

Kosuke Imai (Princeton) Basic Principles POL572 Spring 2016 45 / 66



Application: List Experiment

The 1991 National Race and Politics Survey (Sniderman et al.)
Randomize the sample into the treatment and control groups
The script for the treatment group

Now I’m going to read you four things that sometimes
make people angry or upset. After I read all four,
just tell me HOW MANY of them upset you. (I don’t
want to know which ones, just how many.)

(1) the federal government increasing the tax on
gasoline;

(2) professional athletes getting million-dollar-plus
salaries;

(3) large corporations polluting the environment;
(4) a black family moving next door to you.
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Identification Assumptions and Potential Outcomes

Identification assumptions:
1 No Design Effect: The inclusion of the sensitive item does not affect

answers to control items

2 No Liars: Answers about the sensitive item are truthful

Define a type of each respondent by
total number of yes for control items Yi (0)
truthful answer to the sensitive item Z ∗i

Under the above assumptions, Yi(1) = Yi(0) + Z ∗i
A total of (2× (J + 1)) types
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Example with 3 Control Items

Joint distribution of πyz = (Yi(0) = y ,Z ∗i = z) is identified:

Yi Treatment group Control group
4 (3,1)
3 (2,1) (3,0) (3,1) (3,0)
2 (1,1) (2,0) (2,1) (2,0)
1 �

��(0,1) �
��(1,0) (1,1) �

��(1,0)
0 ���(0,0) ���(0,1) ���(0,0)

Testing the validity of the identification assumptions: if the
assumptions are valid, πyz should be positive for all y and z
Suppose that a negative value of π̂yz is observed. Did this happen
by chance?
Statistical hypothesis test (next topic)
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Key Points

Causal inference is all about predicting counter-factuals
Association (comparison between treated and control groups) is
not causation (comparison between factuals and counterfactuals)

Randomization of treatment eliminates both observed and
unobserved confounders
Design-based vs. model-based inference

Observational studies =⇒ identification problem
Importance of research design: What is your identification
strategy?

Kosuke Imai (Princeton) Basic Principles POL572 Spring 2016 49 / 66



Statistical Hypothesis Test
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Paul the Octopus and Statistical Hypothesis Tests
2010 World Cup

Group: Germany vs Australia
Group: Germany vs Serbia
Group: Ghana vs Germany
Round of 16: Germany vs England
Quarter-final: Argentina vs Germany
Semi-final: Germany vs Spain
3rd place: Uruguay vs Germany
Final: Netherlands vs Spain

Question: Did Paul the Octopus get lucky?

Suppose that Paul is randomly choosing winner
Then, # of correct answers ∼ Binomial(8, 0.5)
The probability that Paul gets them all correct: 1

28 ≈ 0.004

Tie is possible in group rounds: 1
33 × 1

25 ≈ 0.001

Conclusion: Paul may be a prophet
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What are Statistical Hypothesis Tests?

Probabilistic “Proof by contradiction”

General procedure:
1 Choose a null hypothesis (H0) and an alternative hypothesis (H1)
2 Choose a test statistic Z
3 Derive the sampling distribution (or reference distribution) of Z

under H0
4 Is the observed value of Z likely to occur under H0?

Yes =⇒ Retain H0 (6= accept H0)
No =⇒ Reject H0
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More Data about Paul

UEFA Euro 2008
Group: Germany vs Poland
Group: Croatia vs Germany
Group: Austria vs Germany
Quarter-final: Portugal vs Germany
Semi-final: Germany vs Turkey
Final: Germany vs Spain

A total of 14 matches
12 correct guesses 0 2 4 6 8 10 12 14

Reference distribution: Binom(14, 0.5)

Number of correct guesses

D
en

si
ty

0.
00

0.
05

0.
10

0.
15

0.
20

p-value: Probability that under the null you observe something at
least as extreme as what you actually observed
Pr({12,13,14}) ≈ 0.001
In R: pbinom(12, size = 14, prob = 0.5, lower.tail = FALSE)
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p-value and Statistical Significance

p-value: the probability, computed under H0, of observing a value
of the test statistic at least as extreme as its observed value
A smaller p-value presents stronger evidence against H0

p-value less than α indicates statistical significance at the
significance level α

p-value is NOT the probability that H0 (H1) is true (false)
A large p-value can occur either because H0 is true or because H0
is false but the test is not powerful
The statistical significance indicated by the p-value does not
necessarily imply scientific significance

Inverting the hypothesis test to obtain confidence intervals
Typically better to present confidence intervals than p-values
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One-Sample Test

Looks and politics: Todorov et al. Science

p = probability that a more competent politician wins
H0: p = 0.5 and H1 : p > 0.5
Test statistic p̂ = sample proportion
Exact reference distribution: p̂ ∼ Binom(n,0.5)

Asymptotic reference distribution via CLT:

Z−statistic =
p̂ − 0.5

s.e.
=

p̂ − 0.5
0.5/
√

n
d−→ N (0,1)
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Two-Sample Test

H0 : PATE = τ0 and H1 : PATE 6= τ0

Difference-in-means estimator: τ̂
Asymptotic reference distribution:

Z−statistic =
τ̂ − τ0

s.e.
=

τ̂ − τ0√
σ̂2

1
n1

+
σ̂2

0
n0

d−→ N (0,1)

Is Zobs unusual under the null?
Reject the null when |Zobs| > z1−α/2
Retain the null when |Zobs| ≤ z1−α/2

If we assume Yi(1)
i.i.d.∼ N (µ1, σ

2
1) and Yi(0)

i.i.d.∼ N (µ0, σ
2
0), then

t−statistic =
τ̂ − τ0

s.e.
∼ tν

where ν is given by a complex formula (Behrens-Fisher problem)
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Lady Tasting Tea

Does tea taste different depending on whether the tea was poured
into the milk or whether the milk was poured into the tea?
8 cups; n = 8
Randomly choose 4 cups into which pour the tea first (Ti = 1)
Null hypothesis: the lady cannot tell the difference
Sharp null – H0 : Yi(1) = Yi(0) for all i = 1, . . . ,8
Statistic: the number of correctly classified cups
The lady classified all 8 cups correctly!
Did this happen by chance?

Example: Ho and Imai (2006). “Randomization Inference with
Natural Experiments: An Analysis of Ballot Effects in the 2003
California Recall Election.” J. of the Amer. Stat. Assoc.
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Randomization Test (Fisher’s Exact Test)

cups guess actual scenarios . . .
1 M M T T
2 T T T T
3 T T T T
4 M M T M
5 M M M M
6 T T M M
7 T T M T
8 M M M M

correctly guessed 8 4 6

0 2 4 6 8

Frequency Plot

Number of correctly guessed cups

fr
eq
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nc

y

0
5

10
20

30

0 2 4 6 8

Probability Distribution

Number of correctly guessed cups

pr
ob

ab
ili

ty

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

8C4 = 70 ways to do this and each arrangement is equally likely
What is the p-value?
No assumption, but the sharp null may be of little interest
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Error and Power of Hypothesis Test

Two types of errors:

Reject H0 Retain H0
H0 is true Type I error Correct
H0 is false Correct Type II error

Hypothesis tests control the probability of Type I error
They do not control the probability of Type II error
Tradeoff between the two types of error

Size (level) of test: probability that the null is rejected when it is
true
Power of test: probability that a test rejects the null
Typically, we want a most powerful test with the proper size
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Power Analysis

Null hypotheses are often uninteresting
But, hypothesis testing may indicate the strength of evidence for
or against your theory
Power analysis: What sample size do I need in order to detect a
certain departure from the null?
Power = 1− Pr(Type II error)

Four steps:
1 Specify the null hypothesis to be tested and the significance level α
2 Choose a true value for the parameter of interest and derive the

sampling distribution of test statistic
3 Calculate the probability of rejecting the null hypothesis under this

sampling distribution
4 Find the smallest sample size such that this rejection probability

equals a prespecified level
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One-Sided Test Example

H0 : p = p0 and H0 : p > p0

X ∼ N (p∗,p∗(1− p∗)/n)

Reject H0 if X > p0 + zα/2 ×
√

p0(1− p0)/n
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Power Function (σ2
0 = σ2

1 = 1 and n1 = n0)

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Truth (Null hypothesis: tau0 = 0)

P
ow

er

n = 100
n = 500
n = 1000
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Paul’s Rival, Mani the Parakeet

2010 World Cup
Quarter-final: Netherlands vs Brazil
Quarter-final: Uruguay vs Ghana
Quarter-final: Argentina vs Germany
Quarter-final: Paraguay vs Spain
Semi-final: Uruguay vs Netherlands
Semi-final: Germany vs Spain
Final: Netherlands vs Spain

Mani did pretty good too: p-value is 0.0625

Danger of multiple testing =⇒ false discovery
Take 10 animals with no forecasting ability. What is the chance of
getting p-value less than 0.05 at least once?

1− 0.9510 ≈ 0.4

If you do this with enough animals, you will find another Paul
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False Discovery and Publication Bias

Do Statistical Reporting Standards Affect What Is Published? 317

including all specifications (full and partial) in the data analysis. We present an example
of how regression coefficients were selected in the appendix.

RESULTS

Figures 1(b)(a) and 1(b)(b) show the distribution of z-scores7 for coefficients reported
in the APSR and the AJPS for one- and two-tailed tests, respectively.8 The dashed line
represents the critical value for the canonical 5% test of statistical significance. There is
a clear pattern in these figures. Turning first to the two-tailed tests, there is a dramatic
spike in the number of z-scores in the APSR and AJPS just over the critical value of 1.96
(see Figure 1(b)(a)). The formation in the neighborhood of the critical value resembles

z-Statistic
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Figure 1(a). Histogram of z-statistics, APSR & AJPS (Two-Tailed). Width of bars
(0.20) approximately represents 10% caliper. Dotted line represents critical z-statistic
(1.96) associated with p = 0.05 significance level for one-tailed tests.

7 The formal derivation of the caliper test is based on z-scores. However, we replicated the analyses
using t-statistics, and unsurprisingly, the results were nearly identical. Generally, studies employed
sufficiently large samples, and there were very few coefficients in the extremely narrow caliper
between 1.96 and 1.99.

8 Very large outlier z-scores are omitted to make the x-axis labels readable. The omitted cases are
a very small percentage (between 2.4% and 3.3%) of the sample and do not affect the caliper
tests. Additionally, authors make it clear in tables whether they are testing one-sided or two-sided
hypotheses.

Gerber and Malhotra, QJPS 2008
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Statistical Control of False Discovery

Pre-registration system: reduces dishonesty but cannot eliminate
multiple testing problem
Family-wise error rate (FWER): Pr(making at least one Type I error)
Bonferroni procedure: reject the j th null hypothesis Hj if pj <

α
m

where m is the total number of tests
Very conservative: some improvements by Holm and Hochberg

False discovery rate (FDR):

E
{

# of false rejections
max(total # of rejections,1)

}
Adaptive: # of false positives relative to the total # of rejections
Benjamini-Hochberg procedure:

1 Order p-values p(1) ≤ p(2) ≤ · · · ≤ p(m)

2 Find the largest i such that p(i) ≤ αi/m and call it k
3 Reject all H(i) for i = 1,2, . . . , k
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Key Points

Stochastic proof by contradiction
1 Assume what you want to disprove (null hypothesis)
2 Derive the reference distribution of test statistic
3 Compare the observed value with the reference distribution

Interpretation of hypothesis test
1 Statistical significance 6= scientific significance
2 Pay attention to effect size

Power analysis
1 Failure to reject null 6= null is true
2 Power analysis essential at a planning stage

Danger of multiple testing
1 Family-wise error rate, false discovery rate
2 Statistical control of false discovery
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