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@ Relatively new discipline

@ Scientific revolution in the 20th century

@ Data and computing revolutions in the 21st century
@ The world is stochastic rather than deterministic

@ Probability theory used to model stochastic events

@ Statistical inference: Learning about what we do not observe
(parameters) using what we observe (data)

@ Without statistics: wild ~ues

@ With statistics: principled guess

@ assumptions
@ formal properties
© measure of uncertainty



@ Descriptive Inference: summarizing and exploring data
e Inferring “ideal points” from rollcall votes
e Inferring “topics” from texts and speeches
e Inferring “social networks” from surveys

@ Predictive Inference: forecasting out-of-sample data points
e Inferring future state failures from past failures
e Inferring population average turnout from a sample of voters
e Inferring individual level behavior from aggregate data

© Causal Inference: predicting counterfactuals
o Inferring the effects of ethnic minority rule on civil war onset
e Inferring why incumbency status affects election outcomes
o Inferring whether the lack of war among democracies can be
attributed to regime types



@ Quantitative social science research:

@ Find a substantive question

@ Construct theory and hypothesis

© Design an empirical study and collect data

© Use statistics to analyze data and test hypothesis
© Report the results

@ No study in the social sciences is perfect

@ Use best available methods and data, but be aware of limitations
@ Many wrong answers but no single right answer

@ Credibility of data analysis:

Data analysis = gssumption+ statistical theory + interpretation

subjective objective subjective

@ Statistical methods are no substitute for good research design



Sample Surveys
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@ A large population of size N
e Finite population: N < oo
e Super population: N = oo
@ A simple random sample of size n
e Probability sampling: e.g., stratified, cluster, systematic sampling
o Non-probability sampling: e.g., quota, volunteer, snowball sampling

@ The population: Xjfori=1,....N

@ Sampling (binary) indicator: Zy,..., 2y

@ Assumption: YN, Z = nand Pr(Z, = 1) = n/N for all i
@ # of combinations: () = At

@ Estimand = population mean vs. Estimator = sample mean:

. 1N 1N
X:NZX,- and X:E;Z,'X,-

i=1



@ Design-based inference

@ Key idea: Randomness comes from sampling alone
@ Unbiasedness (over repeated sampling): E(x) = X
@ Variance of sampling distribution:

w- o S
()

finite population correction

where 82 = SN (X; — X)2/(N — 1) is the population variance

@ Unbiased estimator of the variance:

2 = (1_M)S 52) = V(X
52 = (1 N>n and E(52) = V(X)

where s2 = SN Z/(X; — X)2/(n — 1) is the sample variance
@ Plug-in (sample analogue) principle



Q@ V(X) = E(X?) — {E(X)}?
Q Cov(X, Y) = E(XY) — E(X)E(Y)
© Law of lterated Expectation:
E(X) = E{E(X | Y)}
© Law of Total Variance:

V(X) = E{V(X]Y)} + V{EX|Y)}

within—group variance  between—group variance
© Mean Squared Error Decomposition:

E{(0-0)°} = {E-0))*+ Y\@

bias? variance



@ E(Z)=E(Z?)=n/Nand V(Z) = E(Z?) - E(Z2 = (1 - R)

Q@ E(ZZ)=K(Z|Z=1)Pr(Z=1)= ggg ‘1) for i # j and thus
Cov(Z. Z)) = B(Z:Z) ~ B(Z)E(Z) = — ity (1 = £)

© Use these results to derive the expression:

V(x) = %V(ZZX)
1 ) N N
= = XV(Z +> )" XX Cov(Z, Z)

i=1 j#i

2
_ 1 2 u g
0 D s (5] |
=g
where we used the equality SN, (X; — X)2 = SN x2 — NX°
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© Finally, we proceed as follows:

2
N N
E{Zz,-(x,-—)?)z} = E [ZZ;{(X,-XH(X)?)}
i=1 j

add & subtract

Thus, E(s?) = S2?, implying that the sample variance is unbiased
for the population variance
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@ Unequal sampling probability: Pr(Z; = 1) = =; for each i

@ We still randomly sample n units from the population of size N
where YN, Z = nimplying YN, 7 = n

@ Oversampling of minorities, difficult-to-reach individuals, etc.

@ Sampling weights = inverse of sampling probability

@ Horvitz-Thompson estimator:

1 ZiXi

N ¢
i=1

X =

T

@ Unbiasedness: E(X) = X
@ Design-based variance is complicated but available
@ Hayek estimator (biased but possibly more efficient):

X* = lei1 Z’)(l/ﬂ-l
Y Zifmi
@ Unknow sampling probability ~» post-stratification



@ An infinite population characterized by a probability mode/
o Nonparametric 7
e Parametric 7y (e.g., N'(u, 02))

@ A simple random sample of size n: Xi,..., Xn

@ Assumption: X; is independently and identically distributed (i.i.d.)
according to F

@ Estimator = sample mean vs. Estimand = population mean:

1
i = — X; = E(X;
H n; i and p (Xi)

@ Unbiasedness: E(f1) = i
@ Variance and its unbiased estimator:
g

2 1 n
~ _ A2 —_ . ~ 2
V(M) = 7 and 0° = n_1 I__E 1 ()(I — ,lL)

where 02 = V(X))
~ Kosukelmai (Princeton) ~ BasicPrincipes = POL572 Spring2016  12/66



e If {X;}7, is a sequence of i.i.d. random variables with mean ;. and
finite variance o2, then
Xn 2 n

where “-25” denotes the convergence in probability, i.e., if
X 25 x, then

lim Pr(|X, — x| >¢€) = 0forany e >0
n—oo

e If X, -2 x, then for any continuous function f(-), we have
f(Xa) > f(x)

@ Implication: Justifies the plug-in (sample analogue) principle



@ In Journal of Theoretical Biology,
@ ‘Big and Tall Parents have More Sons” (2005)
@ “Engineers Have More Sons, Nurses Have More Daughters” (2005)
@ “Violent Men Have More Sons” (2006)
© “Beautiful Parents Have More Daughters” (2007)

@ Law of Averages in action
@ 1995:57.1%

|| 45qirll 35 boys I\

Q@ 1996: 56.6
@ 1997:51.8
Q 1998: 50.6
© 1999: 49.3
@ 2000: 50.0

| @ No dupilicates: 47.7%
@ Population frequency: 48.5%

215115 25 50y

1998

Gelman & Weakliem, American Scientist




@ If {X;}7, is a sequence of i.i.d. random variables with mean ;. and
finite variance o2, then

Yn—/t d
o/ — N(0,1)

N——
z-score of sample mean

where “-%” represents the convergence in distribution, i.e., if
X, -4+ X, then

lim P(X, < x) = P(X < x) for all x

n—oo
with P(X < x) being continuous at every x
e If X, -+ X, then for any continuous function f(-),
F(Xn) % £(X)

@ Implication: Justifies asymptotic (normal) approximation



Pascal’s Triangle

e n' row and k™ column = (7~1) = # of ways to get there

@ Binomial distribution: Pr(X = k) = () p*(1 — p)"*

@ Sir Francis Galton’s Quincunx, Boston Museum of Science, or just
check out YouTube


http://www.youtube.com/watch?v=9xUBhhM4vbM&feature=related

e The Model: X; " F,

w02
@ LLN implies consistency:

A= Xn A H
@ CLT implies asymptotic normality:
VA —p) % N0, o)
= o N (,u, U—nz) in a large sample
But, o is unknown

@ Standard error: estimated standard deviation of sampling
distribution R
se. = 2
€. NG
where 42 is unbiased (shown before) and consistent for o2 (LLN)



@ Putting together, we have:

f—p  d
YN — N(0,1)
——

Z—Sscore

@ We used the Slutzky Theorem: If X, P, x and Yn d, Y, then
Xo+ Yo -L x + Y and X, Y, -% xY

@ This gives 95% asymptotic confidence interval:

K <196) -2 0.95

v 19)
—  Pr(p—-196x8/V/n<u<p+196x4/vn) 2 095

Pr( 196<



@ (1 —a) x 100% asymptotic confidence interval (symmetric and
balanced):

Cli_o = [l—2Zy2 X 56, [1+2Z42X5se]

where s.e. represents the standard error
@ Critical value: Pr(Z > z,/5) = ®(—2,/2) = /2 where Z ~ N(0,1)
Q@ o =0.01gives z,,, =258
@ o« =0.05gives z,,, = 1.96
© «=0.10gives z,,, = 1.64

@ Be careful about the interpretation!

e Confidence intervals are random, while the truth is fixed
e Probability that the true value is in a particular confidence interval is
eitherOor1andnot1 — «

@ Nominal vs. actual coverage probability: Pr(x € Cli_,) Pi1-a
@ Asymptotic inference = approximate inference
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@ Sometimes, exact model-based inference is possible
o If X; """ N(u,02), then i ~ N(u,0?/n) in a finite sample
@ Moreover, in a finite sample,

,u exactly

a/f -

where t,_1 is the t distribution with n — 1 degrees of freedom

@ Use t, 4 (rather than N(0, 1)) to obtain the critical value for exact
confidence intervals

@ As nincreases, t,_¢ approaches to N'(0,1)
@ Fat tail: more conservative inference with wider ClI

t—statistic =

@ Sum of independent random variables: Bernoulli (Binomial),
Exponential (Gamma), Poisson (Poisson), x2 (x?), etc.



density

0.4

0.3

0.2

0.1

0.0




@ 2000 Butterfly ballot debacle: Oops, we have this system called
electoral college!

Official Florida Presidential Ballot
Follow the arrow and Punch the appropriate dot.
Bush > 0@
Buchanan [ ]
Gore o
Nader
([ J
0 2000 Mike g, Tuer

@ National polls = state polls

@ Forecasting fun: political methodologists, other “statisticians”

@ |dea: estimate probability that each state is won by a candidate
and then aggregate electoral votes

@ Quantity of interest: Probability of a candidate winning the election



@ Setup: nj respondents of poll j from state k
@ Model for # of Obama supporters in poll j and state k:
Xik e Binom(nj, pk)
@ Parameters of interest: 6 = {pq,po,..., P51}
@ Popular methods of inference:
@ Method of moments (MM) — solve the moment equation
sample moments(X) = population moments(6)
@ Maximum likelihood (ML) — maximize the likelihood f(X | §)
© Bayesian inference — derive the posterior of parameters

likelihood prior
—— A~
f(X|0) x f(6)

f(X)

~——
marginal likelihood = [ f(X|60)f(6)d6

O X) =

x f(X | 0) f(0)

@ In this case, MM and ML give p = Y7, X/ Y3k



@ Estimate py for each state
@ Simulate M elections using px and its standard error:

@ for state k, sample Obama'’s voteshare from N\/(px, V/(f;))
@ collect all electoral votes from winning states

@ Plot M draws of total electoral votes

Distribution of Obama’s Predicted Electoral Votes

0.08
|

! Actual # of
EVs won

0.06
I

mean = 353.28
sd=11.72

Density
0.04
|

0.02
I

0.00
L

T T T 1
320 340 360 380

Electoral Votes




Poll Results versus the Actual Election Results

7 ]
] g @ Coverage: 55%
2 7 { @ Bias: 1 ppt.
é g ,5{'{'4 @ Bias-adjusted
g M‘ + coverage: 60%
° - A o Still significant
o | dr‘(" undercoverage
| fH’;'+
o o m @ w0

Actual Election Results



@ Random sampling enables statistical inference

@ Design-based vs. Model-based inference

@ Design-based: random sampling as basis for inference
@ Model-based: probability model as basis for inference

@ Sampling weights: inverse probability weighting

@ Challenges of survey research:
e cluster sampling, multi-stage sampling = loss of efficiency
o stratified sampling
@ unit non-response
@ non-probability sampling = model-based inference
e item non-response, social desirability bias, etc.



Causal Inference
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@ Comparison between factual and counterfactual for each unit

@ Incumbency effect:
What would have been the election outcome if a candidate were
not an incumbent?

@ Resource curse thesis:
What would have been the GDP growth rate without oil?

@ Democratic peace theory:
Would the two countries have escalated crisis in the same
situation if they were both autocratic?

@ SUPPLEMENTARY READING: Holland, P. (1986). Statistics and
causal inference. (with discussions) Journal of the American
Statistical Association, Vol. 81: 945-960.


http://imai.Princeton.Edu/teaching/files/Cereal.mov

@ Units:i=1,...,n

@ “Treatment”: T; = 1 if treated, T; = 0 otherwise

@ Observed outcome: Y;

@ Pre-treatment covariates: X;

@ Potential outcomes: Y;(1) and Y;(0) where Y; = Yi(T;)

Voters Contact Turnout Age Party ID

i Ti Y1) Yi(0) X Xi
1 1 1 7 20 D
2 0 ? 0 55 R
3 0 ? 1 40 R
n 1 0 ? 62 D

@ Causal effect: Y;(1) — Yi(0)



@ The notation implies three assumptions:

@ No simultaneity (different from endogeneity)
@ No interference between units: Yi(Ty, To,..., Tp) = Yi(T))
© Same version of the treatment

@ Stable Unit Treatment Value Assumption (SUTVA)
@ Potential violations:

@ feedback effects
@ spill-over effects, carry-over effects
@ different treatment administration

@ Potential outcome is thought to be “fixed”: data cannot distinguish
fixed and random potential outcomes

@ Potential outcomes across units have a distribution
@ Observed outcome is random because the treatment is random

@ Multi-valued treatment: more potential outcomes for each unit



@ “No causation without manipulation” (Holland, 1986)
@ Immutable characteristics; gender, race, age, etc.
@ What does the causal effect of gender mean?

@ Causal effect of having a female politician on policy outcomes
(Chattopadhyay and Duflo, 2004 QJE)

@ Causal effect of having a discussion leader with certain
preferences on deliberation outcomes (Humphreys et al. 2006

wP)
@ Causal effect of a job applicant’s gender/race on call-back rates
(Bertrand and Mullainathan, 2004 AER)

@ Problem: confounding



@ Sample Average Treatment Effect (SATE):

Z (1) -
@ Population Average Treatment Effect (PATE):
E(Yi(1) - Yi(0))
@ Population Average Treatment Effect for the Treated (PATT):
E(Yi(1) = Yi(0) | Ti = 1)

@ Treatment effect heterogeneity: Zero ATE doesn’t mean zero
effect for everyone! —> Conditional ATE

@ Other quantities: Quantile treatment effects etc.



@ Randomized experiments

e Laboratory experiments
e Survey experiments
o Field experiments

@ Observational studies

@ Tradeoff between internal and external validity

e Endogeneity: selection bias
o Generalizability: sample selection, Hawthorne effects, realism

@ “Designing” observational studies

e Natural experiments (haphazard treatment assignment)
e Examples: birthdays, weather, close elections, arbitrary
administrative rules

@ Generalizing experimental results: possible extrapolation
@ Bottom line: No study is perfect, statistics is always needed



@ Units:i=1,...,n

@ May constitute a simple random sample from a population
@ Treatment: T; € {0,1}

@ Outcome: Y; = Yi(T))

@ Complete randomization of the treatment assignment

@ Exactly ny units receive the treatment

@ ng = n— ny units are assigned to the control group

@ Assumption: foralli=1,...,n, 37, T; = ny and
n
(Yi(1). Yi(0) L Ti Pr(Ti=1)= "
@ Estimand = SATE or PATE
@ Estimator = Difference-in-means:
1 n 1 n
F= X TYi- ) (1= T)Y,

i=1

i=1



@ Key idea (Neyman 1923): Randomness comes from treatment
assignment (plus sampling for PATE) alone

@ Design-based (randomization-based) rather than model-based
@ Statistical properties of 7 based on design features

@ Define O = {Y;(0), Yi(1)},
@ Unbiasedness (over repeated treatment assignments):

E(|0) = anE(T,- OV~ o Y1~ E(TH | 0)}¥(0)
i i=1

= —Z(m Y;(0))

= SATE



@ Variance of 7:

V(7| 0) = ( 82+ S+2So1),

1
n
where for t = 0,1,

1< R :
S = p— Z(Y,(t) —Y(t))?> sample variance of Y;(t)

So1 = _1 —Y(0))(Yi(1) — Y(1)) sample covariance

@ The variance is NOT identifiable



@ The usual variance estimator is conservative on average:

s 82
ST 20

T <
V(E|0) < Tl

@ Under the constant additive unit causal effect assumption, i.e.,
Yi(1) — Yi(0) = cforall j,

So1 = 1(Sz+32) and V(7 |0) = 8—12+S—§
o1 = 2 1 0 T a n No
@ The optimal treatment assignment rule:
noPt _ n noPt _ n
1 1+50/S1’ 0 1—|—S1/So

Kosuke Imai (Princeton) Basic Principles POL572  Spring 2016

37/66



@ Let X; = Yi(1) + nyYi(0)/ng and D; = nT;/ny — 1, and write

V(| 0) = lg {(ZDX) }

@ Show
E(Di|0) = 0, E(D?|0) = 2,
1
. . — _—no
E(D;iD; | ©) = nln 1)

© Use © and @ to show,

n
N Mo )2
V(7]10) = ——f— Xi— X
F10) = Ftym 2%
© Substitute the potential outcome expressions for X;



@ Now assume that units are randomly sampled from a population
@ Unbiasedness (over repeated sampling):

E{E(?| 0)} = E(SATE)
= E(Y{(1) - Yi(0))
PATE

@ Variance:

V(7) = V(E( | 0))+EV(7]0)

2 2
- 91, %
n Ng

where o2 is the population variance of Y;(t) for t = 0, 1



Hold k = n;/n constant
Rewrite the difference-in-means estimator as

. 1G (TY() (1= T)Yi(0)
T:EZ( kK 1-k )

I:1 .
~
i.i.d. with mean PATE & variance nV(7)

@ Consistency:

» P, pPATE

@ Asymptotic normality:

2 2
V/n(# — PATE) % N(O,%—F 1?,{)

(1 — a) x 100% Confidence intervals:

[f —s.e. X Zy/2, T +8.€ X Zy0]



@ A random sample of ny units from the “treatment” population of
infinite size

@ A random sample of ng units from the “control” population of
infinite size

@ The randomization of the treatment implies that two populations
are identical except the receipt of the treatment

@ The difference in the population means = PATE

@ Unbiased estimator from the model-based sample surveys:
1 mn 1 Ny
TP AP

2
91

@ Variance is identical: V(7) = T



@ Observational studies = No randomization of treatment

@ Difference in means between two populations can still be
estimated without bias

@ Valid inference for ATE requires additional assumptions

@ Law of Decreasing Credibility (Manski): The credibility of inference
decreases with the strength of the assumptions maintained

@ |dentification: How much can you learn about the estimand if you
had an infinite amount of data?

@ Estimation: How much can you learn about the estimand from a
finite sample?
@ |dentification precedes estimation



@ Assumption 1: Overlap (i.e., no extrapolation)
O0<Pr(Ti=1]|X;=x)<1forany x € X

@ Assumption 2: Ignorability (exogeneity, unconfoundedness, no
omitted variable, selection on observables, etc.)

{Yi(1), Yi(0)} AL T; [ X; = x forany x € X
@ Under these assumptions, we have nonparametric identification:
T = E{pu(1, X)) — (0, X)}
where u(t,x) =E(Y; | Ti=t, X; = x)



@ Partial (sharp bounds) vs. Point identification (point estimates):

@ What can be learned without any assumption other than the ones
which we know are satisfied by the research design?

@ What is a minimum set of assumptions required for point
identification?

© Can we characterize identification region if we relax some or all of
these assumptions?

@ ATE with binary outcome:

[—Pr(Y;=0| T =1,%=x)r(x) = Pr(Y; =1| T, = 0, X = x){1 — n(x)},
Pr(Yi=1|Ti=1,X = x)r(x) + Pr(Y; =0 T; = 0, X = x){1 — 7(x)}]

where 7(x) = Pr(T; = 1| X; = x) is called propensity score

@ The width of the bounds is 1: “A glass is half empty/full”



@ The 1991 National Race and Politics Survey (Sniderman et al.)
@ Randomize the sample into the treatment and control groups
@ The script for the control group

Now I'm going to read you three things that sometimes
make people angry or upset. After I read all three,
just tell me HOW MANY of them upset you. (I don’t
want to know which ones, Jjust how many.)

(1) the federal government increasing the tax on
gasoline;

(2) professional athletes getting million-dollar-plus
salaries;

(3) large corporations polluting the environment.



@ The 1991 National Race and Politics Survey (Sniderman et al.)
@ Randomize the sample into the treatment and control groups
@ The script for the treatment group

Now I'm going to read you four things that sometimes
make people angry or upset. After I read all four,
just tell me HOW MANY of them upset you. (I don't
want to know which ones, Jjust how many.)

(1) the federal government increasing the tax on
gasoline;

(2) professional athletes getting million-dollar-plus
salaries;

(3) large corporations polluting the environment;

(4) a black family moving next door to you.



@ |dentification assumptions:

@ No Design Effect: The inclusion of the sensitive item does not affect
answers to control items

@ No Liars: Answers about the sensitive item are truthful

@ Define a type of each respondent by

e total number of yes for control items Y;(0)
e truthful answer to the sensitive item Z*

@ Under the above assumptions, Y;(1) = Yi(0) + Z*
@ Atotal of (2 x (J + 1)) types



@ Joint distribution of 7y, = (Yi(0) = y, Z" = z) is identified:

Y; Treatment group Control group

4 3.1)
3 (21) (30 (3,1) (3,0)
2 (1,1) (2,0 (2,1) (2,0)
1 (047 (1:0) (1,1) (1:0)
0 (0,0 (017 (0,0)

@ Testing the validity of the identification assumptions: if the
assumptions are valid, 7, should be positive for all y and z

@ Suppose that a negative value of 7 is observed. Did this happen
by chance?

@ Statistical hypothesis test (next topic)



@ Causal inference is all about predicting counter-factuals

@ Association (comparison between treated and control groups) is
not causation (comparison between factuals and counterfactuals)

@ Randomization of treatment eliminates both observed and
unobserved confounders

@ Design-based vs. model-based inference

@ Observational studies = identification problem

@ Importance of research design: What is your identification
strategy?



Statistical Hypothesis Test
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@ 2010 World Cup

Group: Germany vs Australia
Group: Germany vs Serbia

Group: Ghana vs Germany

Round of 16: Germany vs England
Quarter-final: Argentina vs Germany
Semi-final: Germany vs Spain

3rd place: Uruguay vs Germany
Final: Netherlands vs Spain

@ Question: Did Paul the Octopus get lucky?

@ Suppose that Paul is randomly choosing winner
@ Then, # of correct answers ~ Binomial(8, 0.5)
@ The probability that Paul gets them all correct: 8 ~ 0.004

@ Tie is possible in group rounds: 3

x & ~0.001

@ Conclusion: Paul may be a prophet
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@ Probabilistic “Proof by contradiction”

@ General procedure:
@ Choose a null hypothesis (Hp) and an alternative hypothesis (H;)
@ Choose a test statistic Z
© Derive the sampling distribution (or reference distribution) of Z
under Hy
© Is the observed value of Z likely to occur under Hy?

@ Yes — Retain Hy (# accept Hp)
@ No — Reject Hy



Reference distribution: Binom(14, 0.5)

@ UEFA Euro 2008 o

@ Group: Germany vs Poland > — [~

@ Group: Croatia vs Germany 9

@ Group: Austria vs Germany °

@ Quarter-final: Portugal vs Germany

@ Semi-final: Germany vs Turkey

@ Firal: Germany vs Spain > H

s J__=l

0 2 4

Density

o
< -
[S]

0.05
|

el

6 8 10 12 14

@ A total of 14 matches
@ 12 correct guesses

Number of correct guesses

@ p-value: Probability that under the null you observe something at
least as extreme as what you actually observed

e Pr({12,13,14}) ~ 0.001
o InR: pbinom (12, size = 14, prob = 0.5, lower.tail = FALSE)



@ p-value: the probability, computed under Hy, of observing a value
of the test statistic at least as extreme as its observed value

@ A smaller p-value presents stronger evidence against Hy

@ p-value less than « indicates statistical significance at the
significance level «

@ p-value is NOT the probability that Hy (H,) is true (false)

@ A large p-value can occur either because Hj is true or because Hy
is false but the test is not powerful

@ The statistical significance indicated by the p-value does not
necessarily imply scientific significance

@ Inverting the hypothesis test to obtain confidence intervals
@ Typically better to present confidence intervals than p-values



@ Looks and politics: Todorov et al. Science

Which person is the more competent?

@ p = probability that a more competent politician wins

@ Hy: p=05and H;: p>0.5

@ Test statistic p = sample proportion

@ Exact reference distribution: p ~ Binom(n, 0.5)

@ Asymptotic reference distribution via CLT:

p—05 p—05 4
se. 0.5/v/n — NO.1)

Z —statistic =




o Ho : PATE = 1 and H; : PATE 75 70
@ Difference-in-means estimator: 7
@ Asymptotic reference distribution:

L T — T T — T d
Z—statistic = 0 = 0 % AN(0,1)
S.C. 52 52
1 _|_ Z0
m Ny

@ Is Z,ps unusual under the null?
e Reject the null when |Zops| > 21_4 2
e Retain the null when [Zops| < z1_q /2
o If we assume Yj(1) "% A(u1,02) and Y;(0) "% N (p1g, 02), then

— T

.. 7
l—statistic = ~ t,

where v is given by a complex formula (Behrens-Fisher problem)




@ Does tea taste different depending on whether the tea was poured
into the milk or whether the milk was poured into the tea?

@ 8cups;n=28

@ Randomly choose 4 cups into which pour the tea first (T; = 1)
@ Null hypothesis: the lady cannot tell the difference

@ Sharpnull—Hp : Y;(1) = Y;(0) foralli=1,...,8

@ Statistic: the number of correctly classified cups

@ The lady classified all 8 cups correctly!

@ Did this happen by chance?

@ Example: Ho and Imai (2006). “Randomization Inference with
Natural Experiments: An Analysis of Ballot Effects in the 2003
California Recall Election.” J. of the Amer. Stat. Assoc.



cups guess actual | scenarios

probability
1 1 1

00 01 02 03 04 05

ONoO AWM=
E44Z44LZ

44 44Z

-
T
T
T
M
M
M
M
4

o =42 444

correctly guessed

@ gC, = 70 ways to do this and each arrangement
@ What is the p-value?

0 2 4 6 8

Number of correctly guessed cups

is equally likely

@ No assumption, but the sharp null may be of little interest



@ Two types of errors:

Reject Hy Retain Hy
Hp is true  Type | error Correct
H, is false Correct Type Il error
@ Hypothesis tests control the probability of Type | error
@ They do not control the probability of Type Il error
@ Tradeoff between the two types of error

@ Size (level) of test: probability that the null is rejected when it is
true

@ Power of test: probability that a test rejects the null
@ Typically, we want a most powerful test with the proper size



@ Null hypotheses are often uninteresting

@ But, hypothesis testing may indicate the strength of evidence for
or against your theory

@ Power analysis: What sample size do | need in order to detect a
certain departure from the null?

@ Power =1 — Pr(Type II error)

@ Four steps:

@ Specify the null hypothesis to be tested and the significance level o

@ Choose a true value for the parameter of interest and derive the
sampling distribution of test statistic

@ Calculate the probability of rejecting the null hypothesis under this
sampling distribution

© Find the smallest sample size such that this rejection probability
equals a prespecified level



® Ho:p=poandHo:p>po
@ X ~ N(p* p*(1-p*)/n)
® Reject Hy if X > po + Zy 2 x /Po(1 — po)/n

Sampling distribution of 7
when 7 = 3 (Hy true)
Sampling distribution of =
02 = Probability that / when 7 = 0.50 (H, false)
H, is not rejected when
a = 0.50 (Hy false)

=1

W

(=1
BN

1 0.405

FIGURE 6.11: Calculation of P(Type Il Error) for Testing Hp: = = 1/3 against Ha: 7 > 1/3 at a = 0.05
Level, when True Proportion is = = 0.50. A Type Il error occurs if 7= < 0.405, since then P-value >0.05
even though Hy is false.



Power
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Truth (Null hypothesis: tau0 = 0)



e 2010 World Cup

@ Quarter-final: Netherlands vs Brazil

Quarter-final: Uruguay vs Ghana

@ Quarter-final: Argentina vs Germany
@ Quarter-final: Paraguay vs Spain

@ Semi-final: Uruguay vs Netherlands

o

o

Semi-final: Germany vs Spain
Final: Netherlands vs Spain

@ Mani did pretty good too: p-value is 0.0625

@ Danger of multiple testing = false discovery

@ Take 10 animals with no forecasting ability. What is the chance of
getting p-value less than 0.05 at least once?

1-095"0 ~ 04

@ If you do this with enough animals, you will find another Paul
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z-Statistic

Gerber and Malhotra, QJPS 2008
~ Kosukelmai (Princeton) ~ BasicPrincipes = POL572 Spring2016  64/66



@ Pre-registration system: reduces dishonesty but cannot eliminate
multiple testing problem

Family-wise error rate (FWER): Pr(making at least one Type I error)
Bonferroni procedure: reject the jth null hypothesis H; if p; <
where m is the total number of tests

Very conservative: some improvements by Holm and Hochberg

False discovery rate (FDR):

# of false rejections
max(total # of rejections, 1)

Adaptive: # of false positives relative to the total # of rejections
Benjamini-Hochberg procedure:

@ Order p-values p1) < pe) < -+ < P(m)

@ Find the largest i such that p(j, < i/m and call it k

© Rejectall Hj fori=1,2,...,k



@ Stochastic proof by contradiction

@ Assume what you want to disprove (null hypothesis)
@ Derive the reference distribution of test statistic
© Compare the observed value with the reference distribution

@ Interpretation of hypothesis test

@ Statistical significance # scientific significance
@ Pay attention to effect size

@ Power analysis

@ Failure to reject null # null is true
@ Power analysis essential at a planning stage

@ Danger of multiple testing

@ Family-wise error rate, false discovery rate
@ Statistical control of false discovery
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